Call GemSelectCall us | language flags Language | (USD) Currency | Cart
New Arrivals Calibrated Pairs Lots Contact
  : : Synthetic Ruby and Sapphire
Synthetic Ruby & Sapphire

Flame Fusion Process for CorundumThe ability to create gemstones in the laboratory began in 1902 when Auguste Verneuil, a French chemist, developed a method known as flame fusion to create synthetic ruby. This was no mere laboratory experiment. Verneuil soon expanded his lab into a full scale production facility and was turning out 1,000 kg of synthetic corundum annually by 1907.

Verneuil developed flame fusion primarily for the synthesis of ruby, but the same method can be used for the creation of other gem materials, including sapphire and star sapphire, spinel, rutile, and strontium titanate.

The basic concept of the flame fusion method is to take the raw gem material, melt it, and then allow it to recrystallize. The concept is simple, but this method depended on some key bits of technology. First, it was necessary to have extremely pure starting material. In the case of ruby or sapphire, this meant aluminum oxide that was free of impurities like sodium. The earliest attempts to recrystallize ruby were actually accomplished by melting natural ruby crystals, due to the lack of fine pure aluminum oxide.

Flame Fusion Ruby BouleNext, it was necessary to have a way to heat the powdered aluminum oxide to a temperature of at least 2,000 degree Celsius. The recently developed oxyhydrogen torch provided Verneuil with the technology for his furnace.

In the Verneuil process, the powdered aluminum oxide is released down a tube where it passes through a flame that melts the material into small droplets. These droplets fall onto an earthen support rod placed at the bottom of the furnace.

The droplets form a single crystal called a boule. The boule has a characteristic shape with a rounded end, a long cylindrical body, and a tapering end. It is usually about 13 to 25 millimeters in diameter, 50 to 100 millimeters long, and weighs 75 to 250 carats.

Crystals produced by the Verneuil flame fusion process are chemically and physically equivalent to naturally occurring crystals, and strong magnification is usually required to distinguish between the two. One of the signature characteristics of a Verneuil crystal is curved growth lines formed as the cylindrical boule grows upwards in an environment with a high thermal gradient. The equivalent growth lines in natural crystals are parallel.

Synthetic Flame Fusion RubyAnother distinguishing feature of gems produced by flame fusion is the common presence of microscopic gas bubbles formed due to an excess of oxygen in the furnace; imperfections in natural crystals are usually solid impurities. However, gas bubbles alone can no longer be taken as a reliable indication of a synthetic ruby; natural rubies which have been fracture-filled with lead-glass often exhibit gas bubbles in the glass-filled cavities. But note that the fracture-filled rubies are typically heavily included while the flame fusion rubies have no natural inclusions.

  • First Published: April-07-2008
  • Last Updated: August-04-2014
  • © 2005-2014 GemSelect.com all rights reserved.
    Reproduction (text or graphics) without the express written consent of GemSelect.com (SETT Company Ltd.) is strictly prohibited.
Email to a Friend
English speaking customer support only

Toll Free - USA & Canada only:
1-800-464-1640

International:
+66-39340503

Subscribe to our Newsletter
 
Reorder Items
Select Language by clicking on the Image
Russian Italian German French Chinese English
Русский Italiano Deutsch Français Chinese English

Save Money
No shipping Fees for Additional Items!
$6.99 Worldwide Shipping